Label-free high-throughput detection and content sensing of individual droplets in microfluidic systems.
نویسندگان
چکیده
This study reports a microwave-microfluidics integrated approach capable of performing droplet detection at high-throughput as well as content sensing of individual droplets without chemical or physical intrusion. The sensing system consists of a custom microwave circuitry and a spiral-shaped microwave resonator that is integrated with microfluidic chips where droplets are generated. The microwave circuitry is very cost effective by using off-the-shelf components only. It eliminates the need for bulky benchtop equipment, and provides a compact, rapid and sensitive tool compatible for Lab-on-a-Chip (LOC) platforms. To evaluate the resonator's sensing capability, it was first applied to differentiate between single-phase fluids which are aqueous solutions with different concentrations of glucose and potassium chloride respectively by measuring its reflection coefficient as a function of frequency. The minimum concentration assessed was 0.001 g ml(-1) for potassium chloride and 0.01 g ml(-1) for glucose. In the droplet detection experiments, it is demonstrated that the microwave sensor is able to detect droplets generated at as high throughput as 3.33 kHz. Around two million droplets were counted over a period of ten minutes without any missing. For droplet sensing experiments, pairs of droplets that were encapsulated with biological materials were generated alternatively in a double T-junction configuration and clearly identified by the microwave sensor. The sensed biological materials include fetal bovine serum, penicillin antibiotic mixture, milk (2% mf) and d-(+)-glucose. This system has significant advantages over optical detection methods in terms of its cost, size and compatibility with LOC settings and also presents significant improvements over other electrical-based detection techniques in terms of its sensitivity and throughput.
منابع مشابه
Silicon photonic sensors incorporated in a digital microfluidic system.
Label-free biosensing with silicon nanophotonic microring resonator sensors has proven to be an excellent sensing technique for achieving high-throughput and high sensitivity, comparing favorably with other labeled and label-free sensing techniques. However, as in any biosensing platform, silicon nanophotonic microring resonator sensors require a fluidic component which allows the continuous de...
متن کاملLabel-free, high-throughput, electrical detection of cells in droplets.
Today, droplet based microfluidics has become a standard platform for high-throughput single cell experimentation and analysis. However, until now no label-free, integrated single cell detection and discrimination method in droplets is available. We present here a microfluidic chip for fast (>100 Hz) and label-free electrical impedance based detection of cells in droplets. The microfluidic glas...
متن کاملOn-demand Serial Dilution Using Quantized Nano/picoliter-scale Droplets
This paper describes a fully automated droplet-based microfluidic device for on-demand serial dilution that is capable of achieving a dilution ratio of >6000 (concentration ranges from 1 mM to 160nM) over 35 nanoliter-scale droplets. This serial diluter can be applied to high throughput and label-free kinetic assays by integrating with our previously developed on-demand droplet-based microfluid...
متن کاملLabel-free electrochemical biosensors for food and drug application
In food sector, there is a huge demand for rapid, reliable, user & eco-friendly biosensors to analyse the quality and safety of food products. Biosensor based methodology depends upon the recognition of a specific antigens or receptors by corresponding antibodies, aptamers or high-affinity ligands. The first scientifically commercialised sensors were the electrochemical sensors used for the ana...
متن کاملLabel-free electrochemical biosensors for food and drug application
In food sector, there is a huge demand for rapid, reliable, user & eco-friendly biosensors to analyse the quality and safety of food products. Biosensor based methodology depends upon the recognition of a specific antigens or receptors by corresponding antibodies, aptamers or high-affinity ligands. The first scientifically commercialised sensors were the electrochemical sensors used for the ana...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Lab on a chip
دوره 15 20 شماره
صفحات -
تاریخ انتشار 2015